Minggu, 05 Agustus 2012

Partikel Higgs dan Konsekuensi Ilmiahnya

Partikel penyusun materi dan interaksinya sesuai yang dideskripsikan dalam Model Standar.


Dua kemungkinan tak mengenakkan dari hasil Large Hadron Collider: pertama, banyak fitur alam semesta kita, termasuk eksistensi kita, boleh jadi merupakan konsekuensi aksidental dari kondisi yang terkait dengan kelahiran semesta; yang kedua, bahwa menciptakan ”benda” dari ”nonbenda” tampaknya bukan masalah sama sekali... (Lawrence M Krauss, Direktur Origins Project, Arizona State University, ”Newsweek”, 16 Juli 2012).

KOMPAS.com - Di antara sedikit peneliti ilmu fisika partikel di Tanah Air adalah Dr LT Handoko dari LIPI yang Senin (9/7/2012) lalu menulis di Harian Kompas tentang penemuan partikel subatomik oleh lembaga penelitian CERN (Conseil Europeen pour la Recherche Nucleaire/Pusat Riset Nuklir Eropa).

Semata berangkat dari temuan itu saja, terkesan betapa rumitnya topik fisika partikel yang membahas zarah kecil yang menyusun materi di alam semesta. Yang dibahas tak lagi pada dimensi atom, tetapi lebih kecil lagi.

Di masa silam, perihal atom jatuh sebagai wacana filosofis. Filsuf Yunani yang hidup di abad kelima SM sudah menyinggung bahwa materi disusun dari partikel komponen berukuran amat kecil. Teori pertama tentang atom dicetuskan filsuf Yunani lain, Leucippus. Dia menyebut bahwa semua hal terbentuk dari unsur tak bisa dibelah lagi yang disebut ”atom”, yang dalam bahasa Yunani diterjemahkan sebagai ’tak bisa dipotong’.

Karena itu, tatkala fisikawan dan kimiawan Inggris, John Dalton, menerbitkan teori atom dalam bukunya New System of Chemical Philosophy, sebenarnya ide dasarnya bukan baru. Yang membedakannya dengan apa yang dikemukakan oleh filsuf Yunani adalah bahwa apa yang dikemukakan Dalton didasarkan pada observasi dan pengukuran saksama, dan bukan atas debat filosofi (”The Big Idea”, National Geographic).

Partikel subatomik
Dari riset pendahulu seperti itulah, tahun 1920-an diketahui bahwa inti atom tersusun dari dua partikel, proton dan elektron. Tahun 1932, fisikawan James Chadwick menemukan neutron, partikel bermassa sama dengan proton, tetapi tidak memiliki muatan listrik. Semula dikira itulah semua partikel elementer, yakni proton, neutron, dan elektron.

Berikutnya, ilmuwan mengetahui bahwa elektron merupakan partikel fundamental, jadi tidak ada lagi penyusun lain. Akan tetapi, proton dan neutron terbuat dari partikel lebih kecil, yakni kuark. Ada enam tipe kuark, dan hanya dua yang terkait dengan proton dan neutron.

Selain itu, juga ada penemuan neutrino dari proses peluruhan. Ada pula penemuan positron (atau antielektron) oleh Carl Anderson tahun 1932. Partikel eksotik lain juga ditemukan dalam sinar kosmik, termasuk muon dan pion.

Satu hal yang dipahami adalah semua partikel subatomik di atas tak bersifat fundamental, dan para ahli fisika yang meneliti ini mencoba mengembangkan model standar antara tahun 1960 dan 1980. Akhirnya disimpulkan, ada dua kelas partikel elementer yang menyusun semua materi di alam semesta, yakni lepton (termasuk elektron, muon, dan neutrino) dan kuark (ada enam tipe dan bergabung dua, tiga untuk membentuk partikel lebih berat seperti proton, neutron, dan pion).

Lalu, menurut perilaku statistiknya, semua partikel di atas jatuh ke dalam dua kategori, fermion dan boson. Fermion (dari nama fisikawan Italia, Enrico Fermi) adalah kuark dan lepton yang membentuk materi, sedangkan boson (dari nama fisikawan India, Satyendra Nath Bose) seperti halnya foton dikaitkan dengan gaya. (Lihat, misalnya, The Story of Science–From Antiquity to the Present, RR Subramanyam dkk, 2010, untuk rincian.)

Akhir misteri
Keberadaan partikel Higgs—dari nama pencetusnya, fisikawan Inggris, Peter Higgs—sudah diramalkan pada tahun 1960-an. Ia, seperti dituturkan dalam infografis Reuters yang menyertai artikel Dr Handoko, penting untuk menjelaskan mengapa partikel lain memiliki massa, yang bila dirunut lebih jauh terkait dengan pembentukan alam semesta.

Ramalan menyebutkan adanya medan tak kasatmata—yang lalu disebut medan Higgs— yang menembus seluruh angkasa, dan bahwa sifat-sifat materi dan gaya yang mengatur seluruh eksistensi kita berasal dari interaksi mereka dengan medan Higgs yang gaib tadi. Kalau saja besar, atau sifat medan Higgs beda, sifat alam semesta pun akan berbeda dengan yang ada sekarang, dan boleh jadi kita juga tidak ada untuk mengagumi semua itu (tulis Krauss dalam Newsweek, 16/7).

Atas dasar inilah CERN memburu partikel ini dengan memanfaatkan fasilitas (Large Hadron Collider (LHC) dalam naungan Proyek ATLAS yang dimulai musim semi 2009.

Oleh misterinya, juga oleh kedudukannya yang dipandang sentral dalam penciptaan alam semesta, partikel Higgs ini lalu—dalam bahasa kolokial—sering disebut ”partikel Tuhan”, dan muncul dalam buku fisikawan Leon Lederman yang terbit tahun 1994.

Penemuan boson Higgs seperti membenarkan revolusi dalam pemahaman manusia tentang fisika fundamental dan membawa sains lebih dekat dengan zat supernatural di awal alam semesta, tambah Krauss.

Medan Higgs juga dipandang mendukung anggapan bahwa angkasa yang kosong sebenarnya mengandung benih-benih eksistensi kita. Dalam teori inflasi semesta yang dicetuskan oleh Alan Guth, ada medan serupa yang tercipta pada saat paling awal setelah Dentuman Besar yang menyebabkan semesta mengembang luar biasa cepat dalam sepertriliunan detik, di mana setelah itu energi yang ada dalam angkasa yang sepertinya hampa itu diubah menjadi seluruh materi dan radiasi yang kita saksikan sekarang ini.

Penemuan partikel Higgs di satu sisi menambah wawasan tentang fisika partikel, tetapi juga lebih jauh tentang kondisi awal alam semesta, dan lebih jauh lagi tentang penciptaan alam semesta itu sendiri.

Dalam Science Illustrated (7-8/12) dikemukakan ”10 Pertanyaan Sekitar Dentuman Besar”, di antaranya (nomor 4) ”apa yang menyusun semesta?”. Penemuan partikel Higgs membantu menjawab pertanyaan itu.

Fisika berutang kepada sosok seperti Richard Feynman, yang 60 tahun lalu mengembangkan teknik kalkulasi untuk meramalkan luaran eksperimen (Scientific American, 5/12), atau pada Satyendra Bose yang partikel boson-nya kini populer, tetapi sosok penemunya jarang disebut (Newsweek, 16/7).

Semua upaya itu selain untuk memahami fisika juga ditujukan untuk meningkatkan derajat insani, yang senantiasa haus untuk mengetahui segala ihwal yang terkait dengan eksistensi dirinya. Dalam konteks ini bisa dipertanyakan, sejauh mana kontribusi ilmuwan Indonesia? 


Apa Manfaat Penemuan "Partikel Tuhan"?
Pengumuman Organisasi Eropa untuk Penelitian Nuklir (CERN) tentang penemuan partikel yang konsisten dengan Higgs Boson pada Rabu (4/7/2012) disambut meriah oleh para ilmuwan. Temuan itu juga membuat kalangan awam heboh dan bertanya-tanya.

Higgs Boson adalah partikel elementer yang telah lama dicari. Partikel ini dipercaya memberikan massa dan berperan dalam terbentuknya semesta. Tanpa ada Higgs Boson, atom takkan tercipta, ikatan kimia tak terbentuk semesta pun takkan ada.

Meski temuan CERN yang diumumkan kemarin masih pada tahap awal, dalam arti belum mencapai kesimpulan final, ilmuwan yakin bahwa yang ditemukan adalah Higgs Boson. Lalu, jika memang telah ditemukan, apa yang bisa diharapkan dari penemuan itu? Apa sumbangsihnya bagi umat manusia?

Ilmuwan CERN, Albert de Roeck, mengibaratkan penemuan Higgs Boson serupa dengan penemuan listrik. Manusia takkan pernah bisa mengimajinasikan apa yang akan terjadi. Dengan demikian, jika ditanyakan aplikasinya saat ini, maka jawabannya adalah belum ada.
"Apa yang sangat penting saat ini ialah bahwa Higgs boson bisa menerangkan apa yang mungkin terjadi pada sepersejuta detik awal alam semesta setelah (teori) Big Bang," kata de Roeck seperti dikutip kantor berita AFP, Kamis (5/7/2012).

Situs Langitselatan menerangkan, setelah Big Bang, semesta sangat panas dan terisi oleh lautan proton, netron, elektron, dan partikel lain. Dalam 17 menit pertama, terbentuk atom dan elemen ringan. Hal ini mensyaratkan adanya Higgs Boson.

Banyak ilmuwan mengatakan bahwa penemuan Higgs boson diharapkan melengkapi Model Standar Fisika Partikel. Model standar menguraikan adanya partikel elementer Fermion dan Boson. Model itu juga mensyaratkan adanya partikel elementer yang berperan memberi massa.

Namun, fisikawan Ray Volkas berpandangan lain. Higgs boson mungkin juga berhubungan dengan sesuatu yang lain, misalnya dengan materi gelap, materi yang tak terlihat yang menyusun sebagian besar semesta, berjumlah jauh lebih besar dari materi yang terlihat manusia.

"Mungkin saja, misalnya, Hoggs Boson menjadi jembatan antara materi biasa, yang tersusun atas atom, dan material gelap, yang kita tahu merupakan komponen yang penting bagi semesta. Itu akan memberi implikasi yang fantastik dalam pemahaman seluruh materi semesta, tak cuma atom biasa," katanya.

Menurut Volkas, akan sangat membosankan jika partikel yang baru saja ditemukan CERN hanya memenuhi Model Standar Fisika Partikel. Penemuan partikel itu seharusnya menjadi pintu masuk menuju fisika baru, teori baru yang menguraikan bagaimana semesta tercipta dan bekerja.

Salah satu teori yang disebut Volkas adalah Supersymmetry (SUSY). Dalam SUSY, setiap partikel memiliki partner partikel lain yang hanya berbeda sedikit karakteristiknya. SUSY menarik karena seperti menyatukan semua gaya yang ada di semesta, termasuk menawarkan kemungkinan penyusun materi gelap.

Volkas menuturkan, penelitian Higgs Boson memang seolah mengawang-awang. Namun, karena adanya tantangan di CERN, misalnya soal pertukaran data dalam jumlah besar, lembaga penelitian seperti CERN telah memberikan kontribusi dalam pengembangan world wide web yang mendasari internet.

Saat ini, tugas CERN masih belum selesai. CERN masih harus memastikan apa yang baru saja diumumkannya kemarin, apakah Higgs Boson atau partikel baru. Di sela-sela itu, CERN harus menghadapi tuntutan untuk berhasil sebab telah menghabiskan biaya besar untuk penelitiannya.
Sumber:
http://sains.kompas.com/read/2012/07/12/11190119/Partikel.Higgs.dan.Konsekuensi.Ilmiahnya 
http://sains.kompas.com/read/2012/07/05/19353136/Apa.Manfaat.Penemuan.Partikel.Tuhan?utm_source=sains&utm_medium=cpc&utm_campaign=artbox

Tidak ada komentar:

Posting Komentar